Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Cell Physiol ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605655

RESUMO

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are enzymes that belong to the neuromuscular cholinergic system, their main function is to hydrolyze the neurotransmitter acetylcholine (ACh), through their hydrolysis these enzymes regulate the neuronal and neuromuscular cholinergic system. They have recently attracted considerable attention due to the discovery of new enzymatic and nonenzymatic functions. These discoveries have aroused the interest of numerous scientists, consolidating the relevance of this group of enzymes. Recent investigations have revealed a positive correlation between several risk factors for metabolic syndrome (MetS) and the expression of cholinesterases (ChE's), which underscore the impact of high ChE's activity on the pro-inflammatory state associated with MetS. In addition, the excessive hydrolysis of ACh and other choline esters (succinylcholine, propionylcholine, butyrylcholine, etc.) by both ChE's results in the overproduction of fatty acid precursor metabolites, which facilitate the synthesis of very low-density lipoproteins and triacylglycerols. Participation in these processes may represent the link between ChE's and metabolic disorders. However, further scientific research is required to fully elucidate the involvement of ChE's in metabolic diseases. This review aims to collect recent research studies that contribute to understanding the association between the cholinergic system and metabolic diseases.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37151168

RESUMO

Type 2 diabetes mellitus (T2DM) is a world epidemic with a high prevalence and mortality. The origin of macro and microvascular complications associated with T2DM is complex and new mechanisms to explain their development are emerging. The changes induced by T2DM in the microenvironment of bone marrow (BM) alter the expansion and differentiation of stem cells and have been related to the development of micro and macrovascular diseases. Alterations in the differentiation and function of hematopoietic, endothelial, and mesenchymal stem cells in T2DM patients reduced the mobility of BM stem cells to the circulation and some immature, dysfunctional, or inflammatory cells pass to the blood (mobilopathy). Consequently, tissue repair is impaired, and the tissue damage caused by hyperglycemia, oxidative stress, and inflammation is increased. These alterations can contribute to diabetic complications, decreasing the quality of life, and increasing mortality. The modulation of the bone marrow microenvironment may be a therapeutic target for treating T2DM and its complications. This article analyses the changes induced in BM and their impact on the development of cardiovascular and kidney complications in T2DM. Also, different therapeutic strategies to restore the bone marrow microenvironment and function through the modulation of oxidative stress, inflammation, and adipogenicity are discussed, considering bone marrow as a novel potential therapeutic target to treat vascular complications of diabetes.

3.
Rev Med Inst Mex Seguro Soc ; 60(2): 211-223, 2022 Mar 01.
Artigo em Espanhol | MEDLINE | ID: mdl-35759643

RESUMO

The endoplasmic reticulum is an abundant, dynamic and energy-sensing organelle. Its abundant membranes, rough and smooth, are distributed in different proportions depending on the cell lineage and requirement. Its function is to carry out protein and lipid synthesis, and it is the main intracellular Ca2+ store. Caloric overload and glycolipotoxicity generated by hypercaloric diets cause alteration of the endoplasmic reticulum, activating the Unfolded Protein Response (UPR) as a reaction to cellular stress related to the endoplasmic reticulum and whose objective is to restore the homeostasis of the organelle by decreasing oxidative stress, protein synthesis and Ca2+ leakage. However, during chronic stress, the UPR induces reactive oxygen species formation, inflammation and apoptosis, exacerbating the state of the endoplasmic reticulum and propagating a deleterious effect on the other organelles. This is why endoplasmic reticulum stress has been considered an inducer of the onset and development of metabolic diseases, including the aggravation of COVID-19. So far, few strategies exist to reestablish endoplasmic reticulum homeostasis, which are targeted to sensors that trigger UPR. Therefore, the identification of new mechanisms and novel therapies related to mitigating the impact of endoplasmic reticulum stress and associated complications is urgently warranted.


El retículo endoplásmico es un organelo abundante, dinámico y sensor de energía. Sus abundantes membranas, rugosa y lisa, se encuentran distribuidas en diferentes proporciones dependiendo del linaje y requerimiento celular. Su función es llevar a cabo la síntesis de proteínas y lípidos, y es el almacén principal de Ca2+ intracelular. La sobrecarga calórica y la glucolipotoxicidad generada por dietas hipercalóricas provoca la alteración del retículo endoplásmico, activando la respuesta a proteínas mal plegadas (UPR, Unfolded Protein Response, por sus siglas en inglés) como reacción al estrés celular relacionado con el retículo endoplásmico y cuyo objetivo es restablecer la homeostasis del organelo al disminuir el estrés oxidante, la síntesis de proteínas y la fuga de Ca2+. Sin embargo, durante un estrés crónico, la UPR induce formación de especies reactivas de oxígeno, inflamación y apoptosis, exacerbando el estado del retículo endoplásmico y propagando un efecto nocivo para los demás organelos. Es por ello que el estrés del retículo endoplásmico se ha considerado un inductor del inicio y desarrollo de enfermedades metabólicas, incluido el agravamiento de COVID-19. Hasta el momento, existen pocas estrategias para reestablecer la homeostasis del retículo endoplásmico, las cuales son dirigidas a los sensores que desencadenan la UPR. Por tanto, se justifica con urgencia la identificación de nuevos mecanismos y terapias novedosas relacionadas con mitigar el impacto del estrés del retículo endoplásmico y las complicaciones asociadas.


Assuntos
COVID-19 , Doenças Metabólicas , Cálcio , Dieta , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Doenças Metabólicas/etiologia , Transdução de Sinais
4.
Rev. Méd. Inst. Mex. Seguro Soc ; 60(2): 211-223, abr. 2022. ilus, tab
Artigo em Espanhol | LILACS | ID: biblio-1367402

RESUMO

El retículo endoplásmico es un organelo abundante, dinámico y sensor de energía. Sus abundantes membranas, rugosa y lisa, se encuentran distribuidas en diferentes proporciones dependiendo del linaje y requerimiento celular. Su función es llevar a cabo la síntesis de proteínas y lípidos, y es el almacén principal de Ca2+ intracelular. La sobrecarga calórica y la glucolipotoxicidad generada por dietas hipercalóricas provoca la alteración del retículo endoplásmico, activando la respuesta a proteínas mal plegadas (UPR, Unfolded Protein Response, por sus siglas en inglés) como reacción al estrés celular relacionado con el retículo endoplásmico y cuyo objetivo es restablecer la homeostasis del organelo al disminuir el estrés oxidante, la síntesis de proteínas y la fuga de Ca2+. Sin embargo, durante un estrés crónico, la UPR induce formación de especies reactivas de oxígeno, inflamación y apoptosis, exacerbando el estado del retículo endoplásmico y propagando un efecto nocivo para los demás organelos. Es por ello que el estrés del retículo endoplásmico se ha considerado un inductor del inicio y desarrollo de enfermedades metabólicas, incluido el agravamiento de COVID-19. Hasta el momento, existen pocas estrategias para reestablecer la homeostasis del retículo endoplásmico, las cuales son dirigidas a los sensores que desencadenan la UPR. Por tanto, se justifica con urgencia la identificación de nuevos mecanismos y terapias novedosas relacionadas con mitigar el impacto del estrés del retículo endoplásmico y las complicaciones asociadas.


The endoplasmic reticulum is an abundant, dynamic and energy-sensing organelle. Its abundant membranes, rough and smooth, are distributed in different proportions depending on the cell lineage and requirement. Its function is to carry out protein and lipid synthesis, and it is the main intracellular Ca2+ store. Caloric overload and glycolipotoxicity generated by hypercaloric diets cause alteration of the endoplasmic reticulum, activating the Unfolded Protein Response (UPR) as a reaction to cellular stress related to the endoplasmic reticulum and whose objective is to restore the homeostasis of the organelle by decreasing oxidative stress, protein synthesis and Ca2+ leakage. However, during chronic stress, the UPR induces reactive oxygen species formation, inflammation and apoptosis, exacerbating the state of the endoplasmic reticulum and propagating a deleterious effect on the other organelles. This is why endoplasmic reticulum stress has been considered an inducer of the onset and development of metabolic diseases, including the aggravation of COVID-19. So far, few strategies exist to reestablish endoplasmic reticulum homeostasis, which are targeted to sensors that trigger UPR. Therefore, the identif ication of new mechanisms and novel therapies related to mitigating the impact of endoplasmic reticulum stress and associated complications is urgently warranted.


Assuntos
Humanos , Carboidratos da Dieta/efeitos adversos , Gorduras na Dieta/efeitos adversos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , COVID-19/complicações , Doenças Metabólicas/etiologia , COVID-19/terapia , Homeostase
5.
Horm Cancer ; 11(3-4): 170-181, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32557212

RESUMO

The development of breast cancer (BC) is influenced by age, overweight, obesity, metabolic syndrome, and diabetes mellitus (DM), which are associated with hyperglycemia, glucose intolerance, insulin resistance, and oxidative stress. High glucose concentration increases a metastatic phenotype in cultured breast cancer cells, promoting cell proliferation, reactive species production (ROS), epithelial mesenchymal transition (EMT), and expression of proteolytic enzymes. Our aim was to determine whether diabetes mellitus favor BC progression in mice and its association with changes in the content of ROS and glycolytic and proteolytic enzymes. Diabetes was induced in 7-week-old Balb/c mice, under 6-h fasting with a unique i. p. dose of streptozotocin 120 mg/kg. Furthermore, 4T1 breast cancer cells were injected beneath the nipple to induce tumors. G6PD, GAPDH, ENO1, uPA, uPAR, PAI-1, ß-catenin, Snail, vimentin, and E-cadherin were measured by western blot and MPP-9 and MMP-2 by gel zymography. TBARS were measured as markers of the lipid peroxidation. Lower survival and increased tumor growth, together with marked EMT, were found in diabetic in comparison with nondiabetic mice. The effects of diabetes were associated with enhanced lipid peroxidation and higher levels of glycolytic (G6PD, GAPDH, and ENO1) and proteolytic (uPA, MMP-9) enzymes. Possibly, hyperglycemia and ROS led to faster progression of breast cancer in diabetic mice, fomenting EMT and the expression of glycolytic and proteolytic enzymes. These enzymes participate in the supply of energy and precursors for macromolecular biosynthesis and extracellular matrix degradation during breast cancer progression.


Assuntos
Neoplasias da Mama/genética , Diabetes Mellitus Experimental/genética , Peptídeo Hidrolases/metabolismo , Animais , Progressão da Doença , Transição Epitelial-Mesenquimal , Feminino , Humanos , Camundongos
6.
Rev Med Inst Mex Seguro Soc ; 56(5): 491-504, 2019 Jan 28.
Artigo em Espanhol | MEDLINE | ID: mdl-30777418

RESUMO

Scientific evidence has identified that the excessive consumption of products made from high-fructose corn syrup is a trigger for obesity, whose prevalence increased in recent years. Due to the metabolic characteristics of fructose, a rapid gastric emptying is produced, altering signals of hunger-satiety and decreasing the appetite. In addition to the hepatic level during catabolism, triose phosphate is generated and adenosine triphosphate (ATP) is reduced, producing uric acid. Triose phosphate triggers the synthesis of fatty acids that increase the production and accumulation of triglycerides, diacylglycerols and ceramides that induce insulin resistance. Hyperlipidemia, insulin resistance and hyperuricemia contribute to the development of hypertension, cardiovascular disease, kidney failure, non-alcoholic fatty liver disease and some kinds of cancer. Understanding the molecular mechanisms and signaling pathways altered by the consumption of fructose is relevant to understand the development of metabolic diseases, as well as to seek therapeutic strategies to improve quality of life.


Las evidencias científicas identifican que el excesivo consumo de productos elaborados con jarabe de maíz de alta fructosa es el detonante de la obesidad, cuya prevalencia incrementó en los últimos años. Debido a las características metabólicas de la fructosa, se produce un rápido vaciado gástrico que altera las señales de hambre-saciedad y disminuye el apetito. A nivel hepático, durante su catabolismo se generan triosas fosfato y decrece el trifosfato de adenosina (ATP, por sus siglas en inglés), lo cual produce ácido úrico. Las triosas fosfato son dirigidas hacia la síntesis de ácidos grasos, incrementando la producción y la acumulación de triacilglicéridos, diacilglicerol y ceramidas que inducen resistencia a la insulina. La hiperlipidemia, la resistencia a la insulina y la hiperuricemia contribuyen al desarrollo de hipertensión, enfermedad cardiovascular, enfermedad renal crónica, hígado graso no alcohólico y algunos tipos de cáncer. Entender los mecanismos moleculares y las vías de señalización alteradas por el consumo de fructosa es relevante para comprender el desarrollo de enfermedades metabólicas, así como la búsqueda de estrategias terapéuticas para procurar una mejor calidad de vida.


Assuntos
Metabolismo dos Carboidratos , Açúcares da Dieta/efeitos adversos , Frutose/efeitos adversos , Metabolismo dos Lipídeos , Doenças Metabólicas/etiologia , Biomarcadores/metabolismo , Açúcares da Dieta/metabolismo , Frutose/metabolismo , Humanos , Hiperlipidemias/etiologia , Hiperuricemia/etiologia , Resistência à Insulina , Doenças Metabólicas/metabolismo
7.
Mol Cell Biochem ; 437(1-2): 65-80, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28612231

RESUMO

Obesity and type II diabetes mellitus have contributed to the increase of breast cancer incidence worldwide. High glucose concentration promotes the proliferation of metastatic cells, favoring the activation of the plasminogen/plasmin system, thus contributing to tumor progression. The efficient formation of plasmin is dependent on the binding of plasminogen to the cell surface. We studied the effect of ε-aminocaproic acid (EACA), an inhibitor of the binding of plasminogen to cell surface, on proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and plasminogen activation system, in metastatic MDA-MB-231 breast cancer cells grown in a high glucose microenvironment and treated with insulin. MDA-MB-231 cells were treated with EACA 12.5 mmol/L under high glucose 30 mmol/L (HG) and high glucose and insulin 80 nmol/L (HG-I) conditions, evaluating: cell population growth, % of viability, migratory, and invasive abilities, as well as the expression of uPA, its receptor (uPAR), and its inhibitor (PAI-1), by real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blot, MMP-2 and MMP-9 mRNAs were evaluated by RT-PCR. Markers of EMT were evaluated by Western blot. Additionally, the presence of active uPA was studied by gel zymography, using casein-plasminogen as substrates. EACA prevented the increase in cell population, migration and invasion induced by HG and insulin, which was associated with the inhibition of EMT and the attenuation of HG- and insulin-dependent expression of uPA, uPAR, PAI-1, MMP-2, MMP-9, α-enolase (ENO A), and HCAM. The interaction of plasminogen to the cell surface and plasmin formation are mediators of the prometastasic action of hyperglycemia and insulin, potentially, EACA can be employed in the prevention and as adjuvant treatment of breast tumorigenesis promoted by hyperglycemia and insulin.


Assuntos
Ácido Aminocaproico/farmacologia , Neoplasias da Mama/metabolismo , Glucose/farmacologia , Insulina/farmacologia , Proteínas de Neoplasias , Plasminogênio , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Invasividade Neoplásica , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Plasminogênio/antagonistas & inibidores , Plasminogênio/metabolismo
8.
Cell Oncol (Dordr) ; 39(4): 365-78, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27106722

RESUMO

BACKGROUND: Accumulating evidence indicates that type 2 diabetes is associated with an increased risk to develop breast cancer. This risk has been attributed to hyperglycemia, hyperinsulinemia and chronic inflammation. As yet, however, the mechanisms underlying this association are poorly understood. Here, we studied the effect of high glucose and insulin on breast cancer-derived cell proliferation, migration, epithelial-mesenchymal transition (EMT) and invasiveness, as well as its relationship to reactive oxygen species (ROS) production and the plasminogen activation system. METHODS: MDA-MB-231 cell proliferation, migration and invasion were assessed using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), scratch-wound and matrigel transwell assays, respectively. ROS production was determined using 2' 7'-dichlorodihydrofluorescein diacetate. The expression of E-cadherin, vimentin, fibronectin, urokinase plasminogen activator (uPA), its receptor (uPAR) and its inhibitor (PAI-1) were assessed using qRT-PCR and/or Western blotting assays, respectively. uPA activity was determined using gel zymography. RESULTS: We found that high glucose stimulated MDA-MB-231 cell proliferation, migration and invasion, together with an increased expression of mesenchymal markers (i.e., vimentin and fibronectin). These effects were further enhanced by the simultaneous administration of insulin. In both cases, the invasion and growth responses were found to be associated with an increased expression of uPA, uPAR and PAI-1, as well as an increase in active uPA. An osmolality effect of high glucose was excluded by using mannitol at an equimolar concentration. We also found that all changes induced by high glucose and insulin were attenuated by the anti-oxidant N-acetylcysteine (NAC) and, thus, depended on ROS production. CONCLUSIONS: From our data we conclude that hyperglycemia and hyperinsulinemia can promote breast cancer cell proliferation, migration and invasion. We found that these features were associated with increased expression of the mesenchymal markers vimentin and fibronectin, as well as increased uPA expression and activation through a mechanism mediated by ROS.


Assuntos
Neoplasias da Mama/patologia , Glucose/farmacologia , Insulina/farmacologia , Invasividade Neoplásica/patologia , Espécies Reativas de Oxigênio/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/biossíntese , Western Blotting , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Humanos , Hiperglicemia/fisiopatologia , Hiperinsulinismo/fisiopatologia , Invasividade Neoplásica/fisiopatologia , Reação em Cadeia da Polimerase
9.
Tumour Biol ; 36(9): 6991-7005, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25861752

RESUMO

Majority of women with estrogen receptor (ER)-positive breast cancers initially respond to hormone therapies such as tamoxifen (TAM; antagonist of estrogen). However, many tumors eventually become resistant to TAM. Therefore, understanding the various cellular components involved in causing resistance to TAM is of paramount importance in designing novel entities for efficacious hormone therapy. Previously, we found that suppression of BIK gene expression induced TAM resistance in MCF-7 breast cancer cells. In order to understand the response of these cells to TAM and its association with resistance, a microarray analysis of gene expression was performed in the BIK-suppressed MCF-7 cells and compared it to the TAM-only-treated cells (controls). Several genes participating in various cellular pathways were identified. Molecules identified in the drug resistance pathway were 14-3-3z or YWHAZ, WEE1, PRKACA, NADK, and HSP90AA 1. Further, genes involved in cell cycle control, apoptosis, and cell proliferation were also found differentially expressed in these cells. Transcriptional and translational analysis of key molecules such as STAT2, AKT 3, and 14-3-3z revealed similar changes at the messenger RNA (mRNA) as well as at the protein level. Importantly, there was no cytotoxic effect of TAM on BIK-suppressed MCF-7 cells. Further, these cells were not arrested at the G0-G1 phase of the cell cycle although 30 % of BIK-suppressed cells were arrested at the G2 phase of the cycle on TAM treatment. Furthermore, we found a relevant interaction between 14-3-3z and WEE1, suggesting that the cytotoxic effect of TAM was prevented in BIK-suppressed cells because this interaction leads to transitory arrest in the G2 phase leading to the repair of damaged DNA and allowing the cells to proliferate.


Assuntos
Proteínas 14-3-3/genética , Proteínas Reguladoras de Apoptose/biossíntese , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Membrana/biossíntese , Tamoxifeno/administração & dosagem , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Estrogênios/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Proteínas de Membrana/genética , Redes e Vias Metabólicas/efeitos dos fármacos , Proteínas Mitocondriais , Proteínas de Neoplasias/biossíntese
10.
Life Sci ; 93(25-26): 975-85, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24184296

RESUMO

AIMS: Excessive energy uptake of dietary carbohydrates results in their storage as fat and requires glucose-6-phosphate dehydrogenase (G6PD)-mediated NADPH production. We sought to assess whether the nicotinamide-induced reduction of G6PD activity might modulate redox balance and lipid accumulation in 3T3-L1 cells. MAIN METHODS: 3T3-L1 preadipocytes (days 4 and 6 of differentiation) and adipocytes were cultured in the presence of 5 or 25 mM glucose. The cells cultured in 25 mM glucose were supplemented with nicotinamide (5-15 mM). Next, we evaluated the following parameters: cell viability, apoptosis, lipid accumulation, lipolysis, reducing power, reactive oxygen species (ROS), NAD(P)H and NAD(P)(+), isocitrate dehydrogenase (IDP), malic enzyme and G6PD, as well as the protein and mRNA levels of G6PD. We also analysed the kinetics of the nicotinamide-induced inhibition of G6PD. KEY FINDINGS: G6PD mRNA levels increased at day 4 of adipocyte differentiation, whereas G6PD activity progressively increased at days 4 and 6 of differentiation and was reduced in adipocytes. Concomitantly, ROS, reducing power and lipid accumulation increased gradually as the preadipocytes matured into adipocytes. High glucose increased the activity of G6PD, which coincided with an increase in ROS, reducing power and lipid accumulation. All of these changes are prevented by nicotinamide, with the exception of lipid accumulation in adipocytes. Nicotinamide increased IDP activity without affecting NADPH levels. Lastly, nicotinamide inhibited G6PD in a non-competitive mixed way. SIGNIFICANCE: Nicotinamide modulates G6PD via a non-competitive mixed inhibition and decreases high glucose-dependent oxidative stress and lipid accumulation. Nicotinamide maintains NADPH levels by increasing the activity of IDP.


Assuntos
Inibidores Enzimáticos/farmacologia , Glucosefosfato Desidrogenase/antagonistas & inibidores , Glucosefosfato Desidrogenase/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Niacinamida/farmacologia , Células 3T3-L1/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ácidos Graxos/metabolismo , Glucose/metabolismo , Glucosefosfato Desidrogenase/genética , Glicerol/metabolismo , Camundongos , NADP/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
11.
Can J Physiol Pharmacol ; 91(10): 855-60, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24144057

RESUMO

Reactive oxygen species derived from abdominal fat and uncontrolled glucose metabolism are contributing factors to both oxidative stress and the development of metabolic syndrome (MetS). This study was designed to evaluate the effects of daily administration of an oral glycine supplement on antioxidant enzymes and lipid peroxidation in MetS patients. The study included 60 volunteers: 30 individuals that were supplemented with glycine (15 g/day) and 30 that were given a placebo for 3 months. We analysed thiobarbituric acid reactive substances (TBARS) and S-nitrosohemoglobin (SNO-Hb) in plasma; the enzymatic activities of glucose-6-phosphate dehydrogenase (G6PD), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) in erythrocytes; and the expression of CAT, GPX, and SOD2 in leukocytes. Individuals treated with glycine showed a 25% decrease in TBARS compared with the placebo-treated group. Furthermore, there was a 20% reduction in SOD-specific activity in the glycine-treated group, which correlated with SOD2 expression. G6PD activity and SNO-Hb levels increased in the glycine-treated male group. Systolic blood pressure (SBP) also showed a significant decrease in the glycine-treated men (p = 0.043). Glycine plays an important role in balancing the redox reactions in the human body, thus protecting against oxidative damage in MetS patients.


Assuntos
Antioxidantes/administração & dosagem , Pressão Sanguínea/efeitos dos fármacos , Suplementos Nutricionais , Glicina/administração & dosagem , Síndrome Metabólica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Administração Oral , Adulto , Biomarcadores/sangue , Catalase/sangue , Método Duplo-Cego , Feminino , Glucosefosfato Desidrogenase/sangue , Glutationa Peroxidase/sangue , Hemoglobinas/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/fisiopatologia , México , Pessoa de Meia-Idade , Superóxido Dismutase/sangue , Sístole , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Fatores de Tempo , Resultado do Tratamento
12.
Int J Oncol ; 43(6): 1777-86, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24100375

RESUMO

Apoptosis is controlled by the BCL-2 family of proteins, which can be divided into three different subclasses based on the conservation of BCL-2 homology domains. BIK is a founding member of the BH3-only pro-apoptotic protein family. BIK is predominantly localized in the endoplasmic reticulum (ER) and induces apoptosis through the mitochondrial pathway by mobilizing calcium from the ER to the mitochondria. In this study, we determined that suppression of the death gene Bik promotes resistance to tamoxifen (TAM) in MCF-7 breast cancer cells. We utilized small interfering (siRNA) to specifically knockdown BIK in MCF-7 cells and studied their response to tamoxifen. The levels of cell apoptosis, the potential mitochondrial membrane (∆Ψ(m)), and the activation of total caspases were analyzed. Western blot analysis was used to determine the expression of some BCL-2 family proteins. Flow cytometry studies revealed an increase in apoptosis level in MCF-7 cells and a 2-fold increase in relative BIK messenger RNA (mRNA) expression at a concentration of 6.0 µM of TAM. BIK silencing, with a specific RNAi, blocked TAM-induced apoptosis in 45 ± 6.78% of cells. Moreover, it decreased mitochondrial membrane potential (Ψm) and total caspase activity, and exhibited low expression of pro-apoptotic proteins BAX, BAK, PUMA and a high expression of BCl-2 and MCL-1. The above suggests resistance to TAM, regulating the intrinsic pathway and indicate that BIK comprises an important factor in the process of apoptosis, which may exert an influence the ER pathway, which regulates mitochondrial integrity. Collectively, our results show that BIK is a central component of the programmed cell death of TAM-induced MCF-7 breast cancer cells. The silencing of BIK gene will be useful for future studies to establish the mechanisms of regulation of resistance to TAM.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Tamoxifeno/farmacologia , Antineoplásicos Hormonais/farmacologia , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Neoplasias da Mama , Caspases/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/genética , Proteínas de Membrana/genética , Proteínas Mitocondriais , Interferência de RNA , RNA Interferente Pequeno
13.
Reproduction ; 137(6): 979-86, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19318588

RESUMO

Apoptosis of granulosa cells during follicular atresia is preceded by oxidative stress, partly due to a drop in the antioxidant glutathione (GSH). Under oxidative stress, GSH regeneration is dependent on the adequate supply of NADPH by glucose-6-phosphate dehydrogenase (G6PD). In this study, we analyzed the changes of G6PD, GSH, and oxidative stress of granulosa cells and follicular liquid and its association with apoptosis during atresia of small (4-6 mm) and large (>6 mm) sheep antral follicles. G6PD activity was found to be higher in granulosa cells of healthy small rather than large follicles, with similar GSH concentration in both cases. During atresia, increased apoptosis and protein oxidation, as well as a drop in GSH levels, were observed in follicles of both sizes. Furthermore, the activity of G6PD decreased in atretic small follicles, but not in large ones. GSH decreased and protein oxidation increased in follicular fluid. This was dependent on the degree of atresia, whereas the changes in G6PD activity were based on the type of follicle. The higher G6PD activity in the small follicles could be related to granulosa cell proliferation, follicular growth, and a lower sensitivity to oxidative stress when compared with large follicles. The results also indicate that GSH concentration in atretic follicles depends on other factors in addition to G6PD, such as de novo synthesis or activity of other NADPH-producing enzymes. Finally, lower G6PD activity in large follicles indicating a higher susceptibility to oxidative stress associated to apoptosis progression in follicle atresia.


Assuntos
Atresia Folicular/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Células da Granulosa/enzimologia , Animais , Apoptose , Proliferação de Células , Desidroepiandrosterona/metabolismo , Feminino , Glutationa/metabolismo , Células da Granulosa/patologia , Estresse Oxidativo , Carbonilação Proteica , Ovinos
14.
Life Sci ; 78(22): 2601-7, 2006 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-16325866

RESUMO

Hyperglycemia is associated with metabolic disturbances affecting cell redox potential, particularly the NADPH/NADP+ ratio and reduced glutathione levels. Under oxidative stress, the NADPH supply for reduced glutathione regeneration is dependent on glucose-6-phosphate dehydrogenase. We assessed the effect of different hyperglycemic conditions on enzymatic activities involved in glutathione regeneration (glucose-6-phosphate dehydrogenase and glutathione reductase), NADP(H) and reduced glutathione concentrations in order to analyze the relative role of these enzymes in the control of glutathione restoration. Male Sprague-Dawley rats with mild, moderate and severe hyperglycemia were obtained using different regimens of streptozotocin and nicotinamide. Fifteen days after treatment, rats were killed and enzymatic activities, NADP(H) and reduced glutathione were measured in liver and pancreas. Severe hyperglycemia was associated with decreased body weight, plasma insulin, glucose-6-phosphate dehydrogenase activity, NADPH/NADP+ ratio and glutathione levels in the liver and pancreas, and enhanced NADP+ and glutathione reductase activity in the liver. Moderate hyperglycemia caused similar changes, although body weight and liver NADP+ concentration were not affected and pancreatic glutathione reductase activity decreased. Mild hyperglycemia was associated with a reduction in pancreatic glucose-6-phosphate dehydrogenase activity. Glucose-6-phosphate dehydrogenase, NADPH/NADP+ ratio and glutathione level, vary inversely in relation to blood glucose concentrations, whereas liver glutathione reductase was enhanced during severe hyperglycemia. We conclude that glucose-6-phosphate dehydrogenase and NADPH/NADP+ were highly sensitive to low levels of hyperglycemia. NADPH/NADP+ is regulated by glucose-6-phosphate dehydrogenase in the liver and pancreas, whereas levels of reduced glutathione are mainly dependent on the NADPH supply.


Assuntos
Diabetes Mellitus Experimental/enzimologia , Glucosefosfato Desidrogenase/metabolismo , Hiperglicemia/enzimologia , Fígado/enzimologia , NADP/metabolismo , Pâncreas/enzimologia , Animais , Glicemia , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/fisiopatologia , Glutationa/metabolismo , Hiperglicemia/sangue , Hiperglicemia/fisiopatologia , Masculino , Tamanho do Órgão , Oxirredução , Ratos , Ratos Sprague-Dawley
15.
Gac Med Mex ; 140(4): 437-47, 2004.
Artigo em Espanhol | MEDLINE | ID: mdl-15456154

RESUMO

The knowledge of the molecular basis of diabetes mellitus physiopathology will allow improvements in treatment or prevention of the disease. Diabetes mellitus is a complex disease in which hyperglycemia leads to complications in several organs. In this condition, there is increase in reactive oxygen species (ROS) as a result of glucose autooxidation; its metabolism produces accumulation of metabolites such as fructose, sorbitol, and triose phosphate. The latter generates a oxoaldehydes with high capacity to produce protein glycation and oxidative stress. Moreover, there is an increase in synthesis of diacylglycerol from triosephosphate, which activates protein kinase C. On the other hand, alteration of normal ratio between reduced and oxidized niacinamide nucleotides leads to low efficiency of antioxidative systems. Finally, this metabolic dysregulation causes altered signal transduction, abnormal gene expression, and tissue damage, resulting in development of diabetic complications.


Assuntos
Diabetes Mellitus/fisiopatologia , Hiperglicemia/fisiopatologia , Humanos , Biologia Molecular , Estresse Oxidativo/fisiologia
16.
Gac. méd. Méx ; 140(4): 437-447, jul.-ago. 2004. ilus
Artigo em Espanhol | LILACS | ID: lil-632209

RESUMO

El propósito de este trabajo es dar a conocer las bases moleculares de la fisiopatología de la diabetes mellitus, con el fin de prevenir la enfermedad o mejorar el tratamiento. La diabetes mellitus es una enfermedad compleja, donde la hiperglucemia crónica provoca complicaciones en distintos órganos. En esta condición aumentan las especies reactivas de oxígeno como resultado de su autooxidacción, por lo que su metabolismo propicia la acumulación de metabolitos como la fructosa, el sorbitol y las triosas fosfato. Éstos últimos generan α-oxoaldehídos reactivos con alta capacidad de unirse a proteínas y generar estrés oxidativo. Además, hay aumento de la síntesis de diacilgliceroles a partir de las triosas fosfato, las cuales activan a la pro teína cinasa C. Por otra parte, la alteración de la proporción normal entre los nucleótidos de niacinamida reducidos con respecto a los oxidados conduce a una baja eficiencia de los sistemas antioxidantes. Finalmente, estas desregulaciones metabólicas causan alteración en la transducción de la señal, en la expresión anormal de genes, además de daño tisular, lo que propicia complicaciones en los pacientes con diabetes.


The knowledge of the molecular basis of diabetes mellitus physiopathology will allow improvements in treatment or prevention of the disease. Diabetes mellitus is a complex disease in which hyperglycemia leads to complications in several organs. In this condition, there is increase in reactive oxygen species (ROS) as a result of glucose autooxidation; its metabolism produces accumulation of metabolites such as fructose, sorbitol, and triose phosphate. The latter generates α oxoaldehydes with high capacity to produce protein glycation and oxidative stress. Moreover, there is an increase in synthesis of diacylglycerol from triose phosphate, which activates protein kinase C. On the other hand, alteration of normal ratio between reduced and oxidized niacinamide nucleotides leads to low efficiency of antioxidative systems. Finally, this metabolic dysregulation causes altered signal transduction, abnormal gene expression, and tissue damage, resulting in development of diabetic complications.


Assuntos
Humanos , Diabetes Mellitus/fisiopatologia , Hiperglicemia/fisiopatologia , Biologia Molecular , Estresse Oxidativo/fisiologia
17.
Gac. méd. Méx ; 137(4): 291-302, jul.-ago. 2001. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-312191

RESUMO

La ovulación es un complejo proceso que además de gonadotropinas y esteroides requiere mediadores locales como las citocinas, que también participan en la respuesta inflamatorio. De interés particular es el sistema de la interleucina-1 (IL-1), que al parecer es un intermediario de las gonadotropinas en el proceso ovulatorio. El ovario cuenta con el sistema completo de IL-1 que incluye: ligandos, receptores y el antagonista del receptor. A la IL-1 se le atribuye la inducción de diversos eventos asociados con la ovulación como son: la producción de prostaglandinas, de progesterona, del activador del plasminógeno, glicosaminoglicanos y del aumento preovulatorio de la permeabilidad vascular. El principal efector de la interleucina-1 es el óxido nítrico. El interés de esta revisión es valorar la localización tisular y la acción de la IL-1 en el folículo preovulatorio y su dinámica vascular; así como analizar los mecanismos propuestos para la acción de la IL-1 como modulador de los eventos que llevan a la ruptura folicular.


Assuntos
Interleucina-1 , Ovulação/fisiologia , Óxido Nítrico/fisiologia , Fase Folicular , Gonadotropinas
18.
Gac. méd. Méx ; 132(5): 519-28, sept.-oct. 1996. tab, ilus
Artigo em Espanhol | LILACS | ID: lil-202947

RESUMO

Se pensó por mucho tiempo que las citocinas sintetizadas por el útero y la placenta eran producidas exclusivamente por y para actuar sobre las células linfohematopoyéticas. Si bien muchas de estas citocinas modulan la fase efectora del sistema inmune, en el tracto reproductor femenino, sus principales células blanco y sitios de síntesis no son las células epiteliales uterinas, las células deciduales y el trofoblasto parecen ser la fuente principal de las citocinas. Esto sugiere dos alternativas no necesariamente exclusivas: o que estas células son extensiones que regulan al sistema inmune o que estos factores modulan el crecimiento y diferenciación de los tejidos uterinos y embrionarios. En el presente trabajo se analizan los sitios de síntesis, las células blanco y las posibles funciones de la citocinas durante la gestación temprana.


Assuntos
Blastocisto/fisiologia , Citocinas/fisiologia , Endométrio/fisiologia , Interleucinas/fisiologia , Gravidez/fisiologia , Trofoblastos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...